You are probably quite familiar with the formula for determining the circumference of a circle:
Whenever we have a circle whose central angle equals 90°, it will always subtend an arc and a chord whose ratio will always be 1.1107207345. For all other central angles, we have calculated this ratio for 1 through 180 degrees. If you just want a rough idea of what the arc to chord ratio is for a particular central angle is, then these tables are fine. However, if you need an exact answer, then use the calculator located here and choose the “Chord AB & Arc AB” menu option.
Arc ÷ Chord Ratio | Angle |
---|---|
1.0000126925 | 1 |
1.0000507714 | 2 |
1.0001142407 | 3 |
1.0002031072 | 4 |
1.0003173803 | 5 |
1.0004570723 | 6 |
1.0006221981 | 7 |
1.0008127753 | 8 |
1.0010288241 | 9 |
1.0012703678 | 10 |
1.0015374321 | 11 |
1.0018300456 | 12 |
1.0021482395 | 13 |
1.0024920478 | 14 |
1.0028615075 | 15 |
1.003256658 | 16 |
1.0036775418 | 17 |
1.004124204 | 18 |
1.0045966924 | 19 |
1.005095058 | 20 |
1.0056193542 | 21 |
1.0061696376 | 22 |
1.0067459673 | 23 |
1.0073484055 | 24 |
1.0079770174 | 25 |
1.0086318707 | 26 |
1.0093130364 | 27 |
1.0100205881 | 28 |
1.0107546028 | 29 |
1.0115151599 | 30 |
1.0123023423 | 31 |
1.0131162356 | 32 |
1.0139569286 | 33 |
1.0148245129 | 34 |
1.0157190836 | 35 |
1.0166407385 | 36 |
1.0175895787 | 37 |
1.0185657084 | 38 |
1.0195692351 | 39 |
1.0206002693 | 40 |
1.021658925 | 41 |
1.0227453191 | 42 |
1.0238595721 | 43 |
1.0250018077 | 44 |
1.026172153 | 45 |
1.0273707383 | 46 |
1.0285976976 | 47 |
1.0298531682 | 48 |
1.0311372908 | 49 |
1.0324502098 | 50 |
1.0337920731 | 51 |
1.0351630322 | 52 |
1.0365632421 | 53 |
1.0379928618 | 54 |
1.0394520537 | 55 |
1.0409409841 | 56 |
1.0424598231 | 57 |
1.0440087448 | 58 |
1.0455879268 | 59 |
1.0471975512 | 60 |
Arc ÷ Chord Ratio | Angle |
---|---|
1.0488378036 | 61 |
1.050508874 | 62 |
1.0522109562 | 63 |
1.0539442484 | 64 |
1.0557089529 | 65 |
1.0575052762 | 66 |
1.0593334293 | 67 |
1.0611936274 | 68 |
1.0630860903 | 69 |
1.0650110421 | 70 |
1.0669687116 | 71 |
1.0689593321 | 72 |
1.0709831418 | 73 |
1.0730403835 | 74 |
1.0751313048 | 75 |
1.0772561584 | 76 |
1.0794152016 | 77 |
1.0816086972 | 78 |
1.0838369128 | 79 |
1.0861001212 | 80 |
1.0883986007 | 81 |
1.0907326349 | 82 |
1.0931025126 | 83 |
1.0955085283 | 84 |
1.0979509823 | 85 |
1.1004301803 | 86 |
1.102946434 | 87 |
1.1055000609 | 88 |
1.1080913846 | 89 |
1.1107207345 | 90 |
1.1133884467 | 91 |
1.116094863 | 92 |
1.1188403321 | 93 |
1.121625209 | 94 |
1.1244498553 | 95 |
1.1273146394 | 96 |
1.1302199365 | 97 |
1.1331661289 | 98 |
1.1361536059 | 99 |
1.1391827639 | 100 |
1.142254007 | 101 |
1.1453677464 | 102 |
1.1485244013 | 103 |
1.1517243983 | 104 |
1.1549681721 | 105 |
1.1582561656 | 106 |
1.1615888295 | 107 |
1.1649666232 | 108 |
1.1683900145 | 109 |
1.1718594799 | 110 |
1.1753755047 | 111 |
1.1789385831 | 112 |
1.1825492187 | 113 |
1.1862079244 | 114 |
1.1899152225 | 115 |
1.1936716452 | 116 |
1.1974777346 | 117 |
1.2013340428 | 118 |
1.2052411323 | 119 |
1.2091995762 | 120 |
Arc ÷ Chord Ratio | Angle |
---|---|
1.2132099582 | 121 |
1.217272873 | 122 |
1.2213889267 | 123 |
1.2255587364 | 124 |
1.2297829313 | 125 |
1.2340621521 | 126 |
1.2383970519 | 127 |
1.242788296 | 128 |
1.2472365626 | 129 |
1.2517425427 | 130 |
1.2563069404 | 131 |
1.2609304733 | 132 |
1.2656138731 | 133 |
1.2703578851 | 134 |
1.2751632693 | 135 |
1.2800308003 | 136 |
1.2849612677 | 137 |
1.2899554765 | 138 |
1.2950142473 | 139 |
1.3001384169 | 140 |
1.3053288385 | 141 |
1.3105863818 | 142 |
1.315911934 | 143 |
1.3213063997 | 144 |
1.3267707014 | 145 |
1.3323057802 | 146 |
1.3379125956 | 147 |
1.3435921268 | 148 |
1.3493453724 | 149 |
1.3551733512 | 150 |
1.3610771026 | 151 |
1.3670576873 | 152 |
1.3731161873 | 153 |
1.3792537072 | 154 |
1.3854713739 | 155 |
1.3917703377 | 156 |
1.3981517726 | 157 |
1.4046168773 | 158 |
1.4111668751 | 159 |
1.4178030152 | 160 |
1.4245265729 | 161 |
1.4313388505 | 162 |
1.438241178 | 163 |
1.4452349135 | 164 |
1.4523214442 | 165 |
1.4595021871 | 166 |
1.4667785899 | 167 |
1.4741521313 | 168 |
1.4816243224 | 169 |
1.4891967073 | 170 |
1.4968708638 | 171 |
1.5046484046 | 172 |
1.5125309781 | 173 |
1.5205202694 | 174 |
1.5286180011 | 175 |
1.5368259346 | 176 |
1.5451458709 | 177 |
1.553579652 | 178 |
1.5621291616 | 179 |
1.5707963268 | 180 |