If you thought the Quadratic Formula was complicated, the method for solving Cubic Equations is even more complex.
Let’s use the equation from the Cubic Equation Calculator as our first example:

2x3   – 4x2   – 22x + 24 = 0
Cubic equations have to be solved in several steps. First we define a variable ‘f’:

f = (3c/a) – (b²/a²)
3
“Plugging in” the numbers from the above equation, we get:

f = ((3 • -22/2) – (16/4)) / 3       =     – 12.333333…
Next we define ‘g’:

g = (2b³/a³) – (9bc/a²) + (27d/a)
27
From this point on, you are expected to “plug in” the numbers:

g = 4.07407407407407….
Then we define ‘h’:

h = (g²/4) + (f³/27)
h = -65.333333…
If h > 0, there is only 1 real root and is solved by another method.
(SCROLL down for this method)For the special case where f=0, g=0 and h = 0, all 3 roots are real and equal.
(SCROLL to the bottom for this method)When h <= 0, as is the case here, all 3 roots are real and we proceed as follows:

ALL 3 Roots Are Real

We just calculated the values of ‘f’,’g’ and ‘h’ so let’s calculate the rest.
i = ((g²/4) – h)½
i = 8.33563754151978…


 

j = (i)
j = 2.0275875100994063…


 

NOTE: The following trigonometric calculations are in radians

k = arc cosine (- (g / 2i))
k = 1.817673356517739…


L = j • -1
L = -2.0275875100994…


M = cosine (k/3)
M = 0.8219949365268…


N = (Square Root of 3) • sine (k/3)
N = 0.9863939238321…


P = (b/3a) • -1
P = 0.6666666666666…


x1 = 2j • cosine(k/3)   -(b/3a)
x1 = 4


x2 = L • (M + N) + P
x2 = -3


x3 = L • (M – N) + P
x3 = 1

When Only 1 Root Is Real

3x3   – 10x2   + 14x + 27 = 0
f = (3c/a) – (b²/a²)
3
f =   .962962962962962…


g = (2b³/a³) – (9bc/a²) + (27d/a)
27
g = 11.441700960219478…


h = (g²/4) + (f³/27)
h = 32.761202560585275…


R = -(g/2) + (h)½
R = .002889779596782…


S = (R)
S = .142436591824886…


T = -(g/2) – (h)½
T = -11.4445907398163…


U = (T)
U = -2.25354770293599…


X1 = (S + U) – (b/3a)
X1 = -1


X2 = -(S + U)/2 – (b/3a) + i•(S-U)•(3)½/2
X2 = 2.16666666666… + i•2.07498326633146


X3 = -(S + U)/2 – (b/3a) – i•(S-U)•(3)½/2
X3 = 2.16666666666… – i•2.07498326633146

When All 3 Roots Are Real and Equal

x3   + 6x2   + 12x + 8 = 0
f = (3c/a) – (b²/a²)
3
f =   ((3•12/1)-(36/1)) / 3
f =   0


g = (2b³/a³) – (9bc/a²) + (27d/a)
27
g = ((2•216/1) – (9•6•12/1) + (27•8/1)) / 27
g = (432 – 648 + 216) / 27
g = 0


h = (g²/4) + (f³/27)
h=0


x1 = x2 = x3= (d/a)1/3 • -1
x1 = x2 = x3= (8/1)1/3 • -1
x1 = x2 = x3= -2