These formulas, which demonstrate the connection between the coefficients of a polynomial and its roots are named after the French mathematician François Viète (1540 – 1603), usually referred to as “Vieta”. These formulas may be used to check your calculations after you have solved the roots of an equation.
Quadratic Equations
2x² + 4x -6 = 0
and its 3 coefficients are a = 2 b = 4 and c = -6
For a quadratic equation, Vieta’s 2 formulas state that:
X1 + X2 = -(b / a) and X1 • X2 = (c / a)
Now we fill the left side of the formulas with the equation’s roots and the right side of the formulas with the equation’s coefficients.
1 -3 = -(4 / 2) and 1 • -3 = (-6 / 2)
Cubic Equations
2x³ -4x² -22x +24 = 0
and its 4 coefficients are a = 2 b = -4 c = -22 d = 24Let’s state Vieta’s 3 formulas for cubic equations, and then
fill the left side of the formulas with the equation’s roots and the right side of the formulas with the equation’s coefficients.
X1 + X2 + X3 = -(b / a)
4 -3 + 1 = -(-4 / 2)
(X1 • X2) + (X1 • X3) + (X2 • X3) = (c/a)
(4 •-3) + (4 •1) + (-3 • 1) = (-22 / 2)
X1 • X2 • X3 = -(d/a)
4 • -3 • 1 = -(24 / 2)
Quartic Equations
3x⁴ 6x³ -123x² -126x +1,080 = 0
and its 5 coefficients are a = 3 b = 6 c = -123 d = -126 e = 1,080Let’s state Vieta’s 4 formulas for quartic equations, and then
fill the left side of the formulas with the equation’s roots and the right side of the formulas with the equation’s coefficients.
X1 + X2 + X3 + X4 = -(b / a)
5 + 3 -4 -6 = -(6 / 3)
(X1 • X2) + (X1 • X3) + (X1 • X4) + (X2 • X3) + (X2 •X4) + (X3 • X4) = (c / a)
(5 • 3) + (5 • -4) + (5 • -6) + (3 • -4) + (3 • -6) + (-4 • -6) = (-123 / 3)
(X1 • X2 • X3) + (X1 • X2 • X4) + (X1 • X3 • X4) + (X2 • X3 • X4) = -(d / a)
(5 • 3 • -4) + (5 • 3 • -6) + (5 • -4 • -6) + (3 • -4 • -6) = -(-126 / 3)
X1 • X2 • X3 • X4 = (e / a)
5 • 3 • -4 • -6 = (1,080 / 3)
Quintic Equations
2x⁵ +40x⁴ +310x³ +1,160x² +2,088x +1,440 = 0
and its 6 coefficients are a = 2 b = 40 c = 310 d = 1,160 e = 2,088 f = 1,440Let’s state Vieta’s 5 formulas for quintic equations, and then
fill the left side of the formulas with the equation’s roots and the right side of the formulas with the equation’s coefficients.
X1 + X2 + X3 + X4 + X5 = -(b / a)
-2 -3 -4 -5 -6 = -(40 / 2)
(X1 • X2) + (X1 • X3) + (X1 • X4) + (X1 • X5) + (X2 • X3) + (X2 •X4) + (X2 •X5) + (X3 • X4) + (X3 • X5) + (X4 • X5) = (c / a)
(-2 • -3) + (-2 • -4) + (-2 • -5) + (-2 • -6) + (-3 • -4) + (-3 • -5) + (-3 • -6) + (-4 • -5) + (-4 • -6) + (-5 • -6) = (310 / 2)
(X1 • X2 • X3) + (X1 • X2 • X4) + (X1 • X2 • X5) + (X1 • X3 • X4) + (X1 • X3 • X5) + (X1 • X4 • X5) + (X2 • X3 • X4) + (X2 • X3 • X5) + (X2 • X4 • X5) + (X3 • X4 • X5) = -(d / a)
(-2 • -3 • -4) + (-2 • -3 • -5) + (-2 • -3 • -6) + (-2 • -4 • -5) + (-2 • -4 • -6) + (-2 • -5 • -6) + (-3 • -4 • -5) + (-3 • -4 • -6) + (-3 • -5 • -6) + (-4 • -5 • -6) = -(1,160 / 2)
(X1 • X2 • X3 • X4) + (X1 • X2 • X3 • X5) + (X1 • X3 • X4 • X5) + (X1 • X2 • X4 • X5) + (X2 • X3 • X4 • X5) = (e / a)
(-2 • -3 • -4 • -5) + (-2 •-3 • -4 • -6) + (-2 • -4 • -5 • -6) + (-2 • -3 • -5 • -6) + (-3 • -4 • -5 • -6) = (2,088 / 2)
X1 • X2 • X3 • X4 • X5 = -(f / a)
(-2) • (-3) • (-4) • (-5) • (-6) = -(1,440 / 2)
Sextic Equations
3x⁶ +9x⁵ -195x⁴ -405x³ +3,432x² +3,636x -15,120 = 0
and its 7 coefficients are a = 3 b = 9 c = -195 d = -405 e = 3,432 f = 3,636 g = -15,120Let’s state Vieta’s 6 formulas for sextic equations, and then
fill the left side of the formulas with the equation’s roots and the right side of the formulas with the equation’s coefficients.
X1 + X2 + X3 + X4 + X5 + X6 = -(b / a)
2 -3 +4 -5 +6 -7 = -(9 / 3)
(X1 • X2) + (X1 • X3) + (X1 • X4) + (X1 • X5) + (X1 • X6) + (X2 • X3) + (X2 •X4) + (X2 •X5) + (X2 •X6) + (X3 • X4) + (X3 • X5) + (X3 • X6) + (X4 • X5) + (X4 • X6) + (X5 • X6) = (c / a)
(2 • -3) + (2 • 4) + (2 • -5) + (2 • 6) + (2 • -7) + (-3 • 4) + (-3 • -5) + (-3 • 6) + (-3 • -7) + (4 • -5) + (4 • 6) + (4 • -7) + (-5 • 6) + (-5 • -7) + (6 • -7) = (-195 / 3)
(X1 • X2 • X3) + (X1 • X2 • X4) + (X1 • X2 • X5) + (X1 • X2 • X6) + (X1 • X3 • X4) + (X1 • X3 • X5) + (X1 • X3 • X6) + (X1 • X4 • X5) + (X1 • X4 • X6) + (X1 • X5 • X6) + (X2 • X3 • X4) + (X2 • X3 • X5) + (X2 • X3 • X6) + (X2 • X4 • X5) + (X2 • X4 • X6) + (X2 • X5 • X6) + (X3 • X4 • X5) + (X3 • X4 • X6) + (X3 • X5 • X6) + (X4 • X5 • X6) = -(d / a)
(2 • -3 • 4) + (2 • -3 • -5) + (2 • -3 • 6) + (2 • -3 • -7) + (2 • 4 • -5) + (2 • 4 • 6) + (2 • 4 • -7) + (2 • -5 • 6) + (2 • -5 • -7) + (2 • 6 • -7) + (-3 • 4 • -5) + (-3 • 4 • 6) + (-3 • 4 • -7) + (-3 • -5 • 6) + (-3 • -5 • -7) + (-3 • 6 • -7) + (4 • -5 • 6) + (4 • -5 • -7) + (4 • 6 • -7) + (-5 • 6 • -7) = -(-405 / 3)
(X1 • X2 • X3 • X4) + (X1 • X2 • X3 • X5) + (X1 • X2 • X3 • X6) + (X1 • X2 • X4 • X5) + (X1 • X2 • X4 • X6) + (X1 • X2 • X5 • X6) + (X1 • X3 • X4 • X5) + (X1 • X3 • X4 • X6) + (X1 • X3 • X5 • X6) + (X1 • X4 • X5 • X6) + (X2 • X3 • X4 • X5) + (X2 • X3 • X4 • X6) + (X2 • X3 • X5 • X6) + (X2 • X4 • X5 • X6) + (X3 • X4 • X5 • X6) = (e / a)
(2 • -3 • 4 • -5) + (2 • -3 • 4 • 6) + (2 • -3 • 4 • -7) + (2 • -3 • -5 • 6) + (2 • -3 • -5 • -7) + (2 • -3 • 6 • -7) + (2 • 4 • -5 • 6) + (2 • 4 • -5 • -7) + (2 • 4 • 6 • -7) + (2 • -5 • 6 • -7) + (-3 • 4 • -5 • 6) + (-3 • 4 • -5 • -7) + (-3 • 4 • 6 • -7) + (-3 • -5 • 6 • -7) + (4 • -5 • 6 • -7) = (3,432 / 3)
(X1 • X2 • X3 • X4 • X5) + (X1 • X2 • X3 • X4 • X6) + (X1 • X2 • X3 • X5 • X6) + (X1 • X2 • X4 • X5 • X6) + (X1 • X3 • X4 • X5 • X6) + (X2 • X3 • X4 • X5 • X6) = -(f / a)
(2 • -3 • 4 • -5 • 6) + (2 • -3 • 4 • -5 • -7) + (2 • -3 • 4 • 6 • -7) + (2 • -3 • -5 • 6 • -7) + (2 • 4 • -5 • 6 • -7) + (-3 • 4 • -5 • 6 • -7) = -(3,636 / 3)
(X1 • X2 • X3 • X4 • X5 • X6) = (g / a)
(2 • -3 • 4 • -5 • 6 • -7) = (-15,120 / 3)
Should you need to determine Vieta’s Formulas for other equations, the following information should be very helpful.
Quadratic Equations (Second Degree Polynomials)
Quadratic Equations (Second Degree Polynomials)
| Left Side of Equation | Right Side |
|---|---|
| Sum of the 2 Roots= | -(b / a) |
| Product of the 2 Roots= | (c / a) |
Cubic Equations (Third Degree Polynomials)
| Sum of all 3 Roots= | -(b / a) |
| C (3, 2) Sum of the 3 possible 2-term products= |
(c / a) |
| Product of all 3 Roots= | -(d / a) |
Quartic Equations (Fourth Degree Polynomials)
| Sum of all 4 Roots= | -(b / a) |
| C (4, 2) Sum of the 6 possible 2-term products= |
(c / a) |
| C (4, 3) Sum of the 4 possible 3-term products= |
-(d / a) |
| Product of all 4 Roots= | (e / a) |
Quintic Equations (Fifth Degree Polynomials)
| Sum of all 5 Roots= | -(b / a) |
| C (5, 2) Sum of the 10 possible 2-term products= |
(c / a) |
| C (5, 3) Sum of the 10 possible 3-term products= |
-(d / a) |
| C (5, 4) Sum of the 5 possible 4-term products= |
(e / a) |
| Product of all 5 Roots= | -(f / a) |
Sextic Equations (Sixth Degree Polynomials)
| Sum of all 6 Roots= | -(b / a) |
| C (6, 2) Sum of the 15 possible 2-term products= |
(c / a) |
| C (6, 3) Sum of the 20 possible 3-term products= |
-(d / a) |
| C (6, 4) Sum of the 15 possible 4-term products= |
(e / a) |
| C (6, 4) Sum of the 6 possible 5-term products= |
-(f / a) |
| Product of all 6 Roots= | (g / a) |